
JOURNAL OF APPROXIMATION THEORY 64, 226-234 (1991)

Inequalities for Legendre Functions
and Gegenbauer Functions

G. LOHOFER

Institut fur Raumsimulation, Deutsche Forschungsanstalt fUr Luft- und Raumfahrt,
D-5000 K8ln 90, Federal Republic of Germany

Communicated by Alphonse P. Magnus

Received February 14, 1990; revised August 6, 1990

Tn this paper three new and simple bounds for the Legendre functions of the first
kind P, P(x) for real XE [-1,1] are proved. They can easily be transformed for an
application to Gegenbauer functions. At first, a short summary of well-known
inequalities of P;P(x) is given. Then a bound is derived that sccms to bc completely
new. Finally, improvements of two known inequalities are presented. © 1991

Academic Press. Inc.

INTRODUCTION

Upper limits on Legendre functions of the first kind r;:(x) for real XE

[ -1, 1] and n, mEN are essential to an investigation of the convergence
and growth properties of spheriCal harmonic expansion, which appear very
often in theoretical physics. In the following we prove simple bounds for
Legendre functions of the first kind P;I'(x) for real variable x as well as
real parameters v, /1, which seem to be unknown in the literature. Since the
Gegenbauer functions C~(x) of real parameters IX and .le, respectively, the
ultraspherical polynomials C~(x) of degree n EN are closely related to the
Legendre functions, see Eq. (A4), quite analogous bounds can be proved
for these functions too.

A widely known inequality, which is usually cited in mathematical hand
books, e.g., [1,2], and standard books on Legendre functions [3], is for
v~ 1, /1 ~ 0 with v - /1 + 1 > 0 and for x E [ - 1, 1] given by

+1' (8nv ±/1+1) 1
IP;- (x)I<--j;;' F(v+1) (1_x2)1l/2+I/4' (1)

This inequality becomes, however, very crude for increasing v and /1. For

226
0021-9045/91 noo
Copyright © 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.



INEQUALITIES FOR LEGENDRE FUNCTIONS 227

(2)

Legendre polynomials, i.e., for J1 = 0 and v = n EN, there exists an improve
ment of Eq. (1) by the so-called Bernstein inequality, see Refs. [4, 5],

{2 1
IPn(x)1 <~;;; (1-X2)1/4'

On the other hand, for ultraspherical polynomials, it has been shown in
[6] that

(3)
o 21~i 1

IC~(x)1 < r(A)(n+}.)I-). (l_X2)V2'

for n = 0, 1,2, ... and the restricted parameter interval 0 < A< 1. For ), = ~,

where, according to Eq. (A4), the ultraspherical polynomials are identical
to the Legendre polynomials, Eq. (3) also provides a refinement of
Bernstein's inequality (2), which has been proved previously in [7, 8].

However, all these above-mentioned inequalities have the disadvantage
that they tend to infinity for x -+ 1. A limit for the ultraspherical polyno
mials, that remains finite in the interval x E [ - 1, 1], has been presented
in [9],

(4)

(5)IP;;'(x)1 :::::;

where n = 0, 1,2, ... and 0.123:::::;)" < 1. In the special case of the Legendre
polynomials (A =!) this inequality has previously been proved in [10].

In Ref. [11] a constant bound of the Legendre functions valid for all x E

[-1,1] and any integer nand m with 1:::::; Iml :::::;n is given by

r(n +m + 1)

2r(n-m + 1)"

In the following, we present in Theorem 1 two inequalities for the Legendre
functions P;fl(X) and the Gegenbauer functions C~(x) that are finite and
valid in a wide range of the parameters v and J1 respectively a and A. In
Theorem 2 a significant improvement of (1) for v, J1 E N is given. And
finally, in Theorem 3 we prove a refinement of the bound in (5).

RESULTS

THEOREM 1. Let be v, J1 E IR with J1 > -! and v - f1 ;;:, 2. Furthermore, let
the real variable be x E [ -1, 1], if v - J1 E Z; otherwise let it be x E [0, 1].
Then the Legendre functions satisfy the inequalities

IP;/l(x)1 :::::; (1_x2)/l/2 [x2a~(V-/l) + (1- x2) b~:1V~/l)](v-/l)/2

:::::; (1 - X2)/l/2 [x2afl + (1- x2) bV'flJ, (6)
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b '= F-'-(V_--,-J1_+_1_) _
V,I" 2VF«v + J1)j2 + 1) r(v - J1)/2 + 1)

(8)

Proof The integral representation (AI) of the Legendre functions leads,
under the above-mentioned conditions, to the inequality

The last estimation results from an application of the Minkowski inequality
(A8), valid for v-J1~2, where, see Ref. [1],

- "_ 2 f"/2 "21' d _ fiF(J1 + 1/2)al' .- sm qJ qJ - ,
o F(J1 + 1)

and

- ._ f"/2 V-I' . 21' _ F(J1 +!) F«v - J1)j2 + !)
bv,I"- 2 0 cos qJ sm qJ dqJ - F«v + J1)/2 + 1) , (9)

With help of the F-function properties (AS) the first inequality of
Theorem 1 is immediately reproduced.

The second, more simple inequality on the right-hand side of (6) is again
an upper bound of the first one. For v-J1~2 the functionf(y) :=y(v-I')/2
is convex for all y > 0, because

Hence, see Ref. [12], f satisfies the inequality

!(x2a;(V-I') + (1- x 2) b~:1v-I'))

~ x 2!(a;(v-I')) + (1- x 2)!(b~:1v-I'))

= x2al' + (1- x 2) bv,w (10)
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Since the left-hand side of (10) is identical to the bracket expression of the
first inequality on the right-hand side of (6), the proof of Theorem 1 is
completed.

From these results several conclusions can be drawn.

COROLLARIES. 1. Let a, AE IR with A> 0 and a? 2. Furthermore, let
x E [ -1, 1], if a E Z; otherwise let x E [0, 1]. Then the Gegenbauer functions
satisfy the inequalities

IC~(x)1 ~ [X2C~~~2'; + (1- x 2) c;:~]a/l ~ X2C2a,2'; + (1- x 2) ca,,;, (11)

where

F(a/2 + ),)
ca,,; := FU) F( a/2 + 1)'

(This result follows immediately from Theorem 1 with help of Eqs. (A4)
and (AS).)

2. For all xE[-I,I] and all n,m=O,I,2, ... with n-m?2 the
integer order Legendre functions satisfy the inequalities

IP;;'(x)1 ~ (1- x 2)m/2 [x2a~:;:;-m) + (1 - Xl) b~:;:;-m)J(n-m)/2

~ (1- X2)m/2 [x2an,m + (1- x 2) bn,m], (12)

where

A 2-mr(n+m+l)
a '=

n, m' r(m + 1) F(n - m + 1)'

b'= 2-
n
F(n+m+l)

n, m' r( (n + m )/2 + 1) r( (n - m )/2 + 1)'

(13 )

(This result follows immediately from Theorem 1 and Eq. (A2).) For the two
remaining cases: m = n - 1 and m = n the integral in Eq. (AI) yields directly
the simple results

IP~ -l(x)1 = (1 - x 2)(n-l)/2 Ixl an,n-l,

IP~(x)1 = (l-x2t/2 an,n'
(14)

3. For the Legendre polynomials Pn(x) == P~(x) inequality (12) yields
for n? 2
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(17)

b _ r(n + 1) < f2
n,O - 2nr 2(nj2 + 1) '1/;;;.

(The estimation of bn,o immediately results using the Stirling formula
approximation of the r-function in (A6).) Since, unless x = ±1, the value in
the brackets of (15) is smaller than 1, the first inequality reflects the correct
asymptotic behavior of the Legendre polynomials for n ---+ ro,

4. A further simplification of the inequality in Theorem 1, that
becomes useful for variables x close to ± 1, is for all v, 11 E ~ with 11 > -!
given by

IP;I'(x)1 :::;; (1- X
2

)1'/2 aI" (16)

where again x E [-1, 1], if v -11 E Z, but otherwise x E [0, 1] is supposed.
For integers n, m with m ~°this inequality reads for all x E [ -1, 1],

IP;:'(x)1 :::;; (1- x 2)m/2 an,m'

(These results follow immediately from (7) using the rough estimation

IX+i~cosrpl :::;;1,

and Eq. (8).) EVidently, comparing (16) with (AI), the right-hand side of(16)
and consequently also of (6), is an asymptotic approximation to IP;I'(x)1 for
x---+ +1, which means that for x---+ +1 the ":::;;" sign in (6) and (16) can be
replaced by the ""," sign. The equality signs in (6) also hold for x = 0, if
v -11 is an even integer. This follows immediately from (AI) and (9).

The following Theorem 2 presents an improvement of (1) for integer
order Legendre functions.

THEOREM 2. For all x E ( -1, 1) and integers n, m with n ~ 1 and Iml :::;; n,

1
IP;:'(x) I < dn,m (1- X2)1/8' (18)

where

d
nm

:=r(l j4) r(n+m+l) 1 (19)
, n r(n-m+l)n 1/4 '

Proof Because of (A2), the proof can be confined to m ~ O. Setting
x = x' the addition theorem (A3) implies that

{P;:'(x)} 2 ~~n - m + ~~ =! I" Pn(x2+ (1- x 2) cos rp) cos(mrp) drp
n+m+ n 0

:::;;!I" IPn(x2+(I-x2)cosrp)1 drp. (20)
n 0
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Using Bernstein's inequality (2),

[Pn (x 2 + (1- x 2
) cos rp)1

< (2 1 1
.{;;; (l - X 2)1/4 (sin 2 rp + x 2(1 _ cos rp)2) J/4

(2 1 1
,,:;; --J;;; (l - x 2)1/4 J sin rp .

Insertion of this result in (20) and evaluation of the rp-integral with help of
(8) finally verifies Theorem 2.

As long as x is not too close to ± 1, (18) yields a good estimation of
r;:(x). On the other hand, inequality (17) is a good estimation near
x = ±1. Hence, for 1 ,,:;; m ,,:;; n,

[pm( )[ ~ . { dn,m (1 2)mI2' )j' (21)n x '" max mIll (1 2)1/8' - X 0n,m
XE[~J,J] -x

should give a proper constant bound of the integer order Legendre func
tions. The estimation of this maximum leads to the following theorem,
which gives a refinement of (5).

THEOREM 3. For all x E [ -1, 1] and all n, mEN with m ,,:;; n,

F(lj4)e J/4
IP:;'(x)! <-'----

TC

F(n + m + 1) (~+_1_)1/(4+ Jim).
r(n-m+ 1) 2n 2m

(22)

Proof 1. Case m < n. Let us first estimate the relation between tln,m
defined in (13) and dn,m defined in (19). With (A7),

tlnm TC F(n+m+l) n1/42-m
-'=--
dn,m r(lj4) r(n-m+l)r(m+1)

==~ J(n + m)(2m) 4-m
T(lj4) n-m m

TC Fn+m)(n)J/4
~ j2F(lj4)--J\n-m) m

> j2~lj4) JG) > 1,

because n +m ~ 3 in this case. On the other hand, since

F(n +m + 1) 2m 2m( ) IT (n-m+k)":;; IT (n+m)=(n+m)2m,
Tn-m+l k~J k~l

(23)
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we find estimating r(m+ 1) by (A6)

an,m n (n + m)m emn l
/
4

dn,m<r(1/4) 2mm m (24)

Evidently, dnm/( 1- X
2 )1/8 is a strictly decreasing function of 1- x 2 whereas

an m(l- x 2 )m12 is a strictly increasing one. Consequently, taking (23) into
ac~ount, there exists exactly one common point of both functions in the
interval [0, 1] at

(
d )8/(4m+l)

1-x~= ,n,m ,
an,m

the function value of which just corresponds to the expression on the right
hand side of (21). Hence, from (21) and with (19) and (24),

d (a )1/(4m + I)
Ipm( )1 ~ n,m - d n,m

n X "'(1-X~)1/8- n,m dn,m

< r(n + m + 1) (r(1/4) e l
/
4)4m/(4m+ I) (n + m)m/(4m + I)

r(n - m + 1) n 2nm

< r(1/4) e l/4 r(n + m + 1) (n +m)I/(4+I/m)

n r(n-m+ 1) 2nm '

which proves Theorem 3 for n > m.

2. Case m=n. Equations (14) and (13) imply that for n~ 1,

n' J(2n) -n Jr(2n+1)
IP n(x)l:::;an,n=Jr(2n+1) n 4 < nl/4nl/4

J r(2n + 1) r(l/4) e l
/
4

< n l/(4+I/n) n '

where (A7) has been applied. The last expression in this inequality chain is,
however, identical to the expression on the right-hand side of (22) for
n = m. This, finally, completes the proof of Theorem 3.

APPENDIX: BASIC FORMULAS

In the following, a collection of basic formulas used in 'the main part of
this work is listed.

For v, f1 E 11\1: with f1 > -!, and for real x E [0, 1] the Legendre functions
of the first kind have the integral representation, see Refs. [1, 3],
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The validity of Eq. (AI) can be extended to all x E [ -1, 1], if v - J1 E 7l.
For integer order J1 = m = 0, ±1, ±2, ... the Legendre functions satisfy, see

Refs. [1,2],

p~m(x)=(_1)mr(v-m+1)pm f x ).
v r(v+m+1) v\

(A2)

(A4)

For integer order m and integer degree v= n = 0, 1,2, ... we have
P;:'(x) =0, if Iml>n. For m=O, the functions P~(x)=:Pn(x) are the
Legendre polynomials, which satisfy the addition theorem, see Refs. [1-3],

Pn(xx'+~~cosqJ)

=Pn(x)Pn(x')+2 ±F(n-~+l;p~(X)P~(X')COS(hp). (A3)
k=l F(n + + 1

There is a close relation between the Legendre functions r;l'(x) and the
Gegenbauer functions C~(x), see Refs. [1,2J,

C), _ r(a+2Jc)F(Jc+l/2)2A~1/2 ~(A-l/2)
a(x) - F(2Jc) F(a + 1)(I_x2)).j2-1/4 P~+).~1/2(X).

Consequently, using Eq. (A4), many results derived for the
functions can easily be adapted to the Gegenbauer functions.

The recurrence and duplication formulas of the F-function
Refs. [1,2],

F(x + 1) = xr(x)

F(2x) = n -1/222x - 1r(x) F(x + 1/2).

Legendre

read, see

(A5)

An upper and lower bound of the r-function is given for x ~ 1 by the
Stirling formula in the form, see Ref. [12],

exp ( 1 )< F(x+l) <exp (_1_).
12x+ 1 ~xxe-x.j;; 12x

For all n EN, the binomial coefficients satisfy

640/64/2·8

(A6)

(A7)
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The first inequality in (A7) can be found in [12]. The second one can
immediately be derived using (A6).

For p;3 1 the integral version of the Minkowski inequality reads, see
Ref. [12],

(

b ) lipLIf(x) + g(x)IP dx

(
b)lip (b ) lip

~ t If(x)IP dx + LIg(x)IP dx ,

supposed that the integrals exist.
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